Name	
------	--

Topic 4A: ENERGY-WORK THEOREM

$$KE = \frac{1}{2}mv^2$$

PEs=
$$\frac{1}{2}kx^2$$

W=Fd =
$$\Delta E_T$$
 $KE = \frac{1}{2}mv^2$ $PE = mg\Delta h$ $PEs = \frac{1}{2}kx^2$ $P = \frac{W}{t} = \frac{Fd}{t} = F\overline{v}$

Students will be able to:

Skill 28:

- Calculate quantity of energy (KE, PE or PE_s) given a combination of mass, vertical position, velocity, stretch or compression of a spring and spring constant.
- Provide the definitions, variables and equations for the work, kinetic energy and potential (gravitational) energy and elastic (spring) potential energy.
- Assign the units of Joules (J) to work and forms of energy
- ☐ Sketch the graphs of kinetic energy vs speed, potential (gravitational) energy against mass or height and, elastic (spring) potential against stretch of a spring.

Skill 29:

- ☐ Identify the types of energy possessed by an object and relate to the type of work done to give the object energy in FRICTIONLESS SYSTEMS. (Skill 29)
 - o Work done (vertically) against gravity results in gravitational potential energy
 - $\mathbf{W}_{\text{vertical}} = \mathbf{F}_{\mathbf{g}} \mathbf{d} = \mathbf{F}_{\mathbf{g}} \mathbf{h} = \mathbf{mgh}$
 - Work done (horizontally) to increase the speed of an object results in a gain of kinetic energy
 - Whorizontal = Fd = mad = $\frac{1}{2}mv^2$ ($v_f^2 = v_i^2 + 2ad$ so ad = $\frac{1}{2}v^2$)
 - Work done on a spring results in elastic potential energy
 - $W_{\text{spring}} = \overline{F}_s d = \overline{F}_s x = 1/2 \text{ kx } (x) = \frac{1}{2} \text{ kx}^2$ (on a Fs vs x graph it is the area bound by the line)
 - Define internal energy (Q) as the loss of energy to the system (heat) due to friction $W = F_f d = E_T = Q$

Skill 30:

- ☐ Provide the definition and equation for power
- Explain the relationship between power, work and time
- ☐ Calculate power given work and time; force distance and time; or force and average speed

Topic 4B: CONSERVATION OF ENERGY

$$E_T = PE + KE + Q$$

Students will be able to:

Skill 31

- Understand how energy changes from one form to another in horizontal system
 - O Determine the amount of work needed to generate a specific amount of kinetic and/or internal energy

- o Understand how energy changes from one form to another in a vertical system
 - O Determine the change in potential/kinetic or internal energy in a system in which height, speed, and/or temperature change
 - Calculate unknowns such as initial speed, final speed, change in speed, height, stretch or compression of a spring given total energy of the system in an equivalent format.

Skill 32

- ☐ Define the term internal energy
 - O Determine the amount of work done by friction in a horizontal system given a discrepancy in or loss of kinetic energy
 - O Determine the amount of work done by friction in a system given a discrepancy between starting and ending total mechanical energies.

Topic 4A: Energy Work and Power

Skill 28: Forms of Energy		
		:

Topic 4A: Energy Work and Power

Skill 29:	Work Energy Theorem	
<u>Skill 30:</u>	Power	

Topic 4B: Conservation of Energy

Skill 31: Conservation of Energy		
	,	

Topic 4B: Conservation of Energy

CI II AA			
Skill 32:			
•			
			1

$$F_x = kx$$

$$W = Pd = \Delta E_T$$

$$PE_s = \frac{1}{2}kx^2$$

$$PE_s = \frac{1}{2}kx^2$$

$$E_T = PE * KE + Q$$

$$\Delta PE = mg\Delta h$$

$$P = \frac{W}{t} = \frac{Ed}{t} = F\overline{v}$$

$$KE = \frac{1}{2}mv^2$$

k = spring constant

KE = kinetic energy

P = power

PE = potential energy

 PE_s = potential energy stored in a spring

Q = internal energy

 \overline{v} = average velocity or average speed

W = work

x = change in spring length from the equilibrium position

Power

Rate at which work is done or energy is used

$$P = \frac{W}{t} = \frac{Fd}{t} = Fv$$

Work/Energy Principle

Energy is the ability to do work... Work results in a change in total energy $W = Fd = \Delta E_{\tau}$

For work to be done - need force AND motion

Force must agree in direction with distance

Work done horizontally → Kinetic Energy (and/or Heat)

If frictionless, all work → KE

If $F = F_F$ all work \rightarrow HEAT (no gain in speed)

Work done vertically → Gravitational Potential Energy (and/or Heat)

If frictionless, all work \rightarrow PE

If there is a difference between PE gained and work done some work was done against friction (HEAT)

$$\Delta PE = mg\Delta h$$

Work done on a spring -> Spring Potential Energy (and/or Heat)

if frictionless, all work → PEs

If there is a difference between PEs gained and work done some work was done against friction (HEAT)

$$PE_S = \frac{1}{2}KX'$$

Law of Conservation of Energy

 $E_T = PE + KE + O$

PE and KE are forms of mechanical energy.

Heat is non-mechanical, so frictionless systems perfectly conserve mechanical energy!

Cliff Diver –

assuming no air resistance...

	E_{T}	PE	KE	
Тор	$E_T =$	PE+	0	
½ pt	$E_T =$	PE+	KE	
Bottom	$E_T =$	0 + 1	ζE	

E_T unchanged PE_{Top}=KE_{Bottom}

Work on a spring = $F_{s \text{ Avg}}(x)$

Work = area of F_s vs x graph, which is a triangle so W=1/2F_sx where

$$F_s=kx$$
So W=1/2(kx)x = 1/2kx²
W=PE_s=1/2kx²

Spring Toy - if no energy is lost PE_s → KE_{MAX} → PE_{TOP}

Pendulum

Period (time for one complete oscillation) of a pendulum depends on the length of its string - not on mass or release position

Sliding Down Slope - if frictionless...

PETOR + KETOP = KEROTTOM

If not frictionless...

PETOP + KETOP = KEBOTTOM + Q (work done by friction)

Unit 4: Vocabulary and Variables				
Term	Variable	Units	Related Equation/Notes	
Energy (Total	E or E _T	$J, \frac{kg m^2}{s^2}, Nm$		
Energy)				
Kinetic Energy	KE	$J, \frac{kg m^2}{s^2}, Nm$		
Potential Energy	PE	$J, \frac{kg m^2}{s^2}, Nm$		
Elastic Potential	PEs	$J, \frac{kg m^2}{s^2}, Nm$ $J, \frac{kg m^2}{s^2}, Nm$		
Energy		ka m²		
Internal Energy	Q	$J, \frac{kgm}{s^2}, Nm$		
Work	W	$J, \frac{kg m^2}{s^2}, Nm$ $J, \frac{kg m^2}{s^2}, Nm$		
Power	P	$W, \frac{Nm}{s}$ $N, \frac{kg m}{s^2}$		
Spring Force	$ brack F_{s}$	$N, \frac{kg m}{s^2}$		
Net Force	F _{net}	$N, \frac{kg m}{s^2}$		
(Average Force)		3-		
Stretch of a	X	m		
Spring				
Height	h	m	,	
Initial Velocity	Vi	m/s		
Final Velocity	$v_{\rm f}$	m/s		
Change in	Δv	m/s		
Velocity				
Total (mechanical)	E_{T}	$J, \frac{kg m^2}{s^2}, Nm$		
energy				
Spring Constant	k	N/m		
Gravitational	g	N/kg		
field strength or				
acceleration due to gravity				
Mass	m	kg		
		_		