Topic 2D: Graphical Relationships

Dependent variable is represented by "y"; Independent variable is represent by "x"

In order to identify graphical shape, solve equation in terms of dependent variable "y".

When x changes, y does not change	When x increases, y increases. The amount of increase in "y" dependent on the function of change in x (x, x^2 of \sqrt{x}). If x decreases, y decreases according the function of x.			When x increases, y does the opposite as a function of x.
y is not related to x	y is directly related to x	y is directly related to the square of x	y is directly related to the square root of x	y is directly related to the inverse of x or inverse square of x
If x is multiplied by 2, y does not change.	If x is multiplied by 2, y is multiplied by 2.	If x is multiplied by 2, y is multiplied by 2 ²	If x is multiplied by 2, y is multiplied by $\sqrt{2}$	Inverse If x doubles, y is divided by 2 Inverse square If x doubles, y is divided by 2 ²
y≠x	y=mx	y=mx²	$y=m\sqrt{x}$	$y=\frac{m}{x}$ or $y=\frac{m}{x^2}$

For each of the phenomena below:

- i. Identify the equation which summarizes the relationship
- ii. Rearrange in terms of the dependent variable (Assume 1st mentioned is dependent)
- iii. State which graph represents the relationship (A-E)
- 222. What happens to position (d) as time (t) increases for an object moving at equilibrium?

Equation -

d=v+

Mock

Graph Type

223. What happens to final velocity (v_f) as height (d_y) increases for an object in free-fall?

Equation -

Vo- Vand

die Sie

Graph Type -

224. What happens to the height of a fall (d_y) if the time (t) of fall increases?					
Equation - Graph Type -					
Equation - Graph Type -					
225. What happens to the time (t) of fall if the height (d_y) of fall increases for an object in free fall?					
Equation - Graph Type -					
226. What happens to the final velocity (v_f) of a falling object as the time (t) of fall increases?					
Equation - Graph Type –					
Equation - Graph Type –					
227. What happens the magnitude of the gravitational field (g) as the time of fall (t) increases?					
Equation - Graph Type -					
9-9.817/5					
228. What happens to the time (t) of fall for an object as the strength of the gravitational field (g) increases when dropped from the same height on various planets?					
Equation Graph Type –					
For each of the following questions, find the equation that relates the variables and solve by					
applying the type of relationship. le direct, direct square, direct square root.					
229. An object dropped from a height of 5m falls in 2 seconds on planet x. What is the height if it falls for 6 seconds on the same planet?					
230. The final velocity for an object that falls of 12 seconds on Mars is 43.2 m/s. What is the					
230. The final velocity for an object that falls of 12 seconds on Mars is 43.2 m/s. What is the					
final velocity for an object that falls for 6 seconds on Mars?					
Ve=at +:2 v==a 43.2mg					
233. An object moving at equilibrium for 5 seconds covers a distance of 20m. What distance will it cover in 15 seconds?					
$d = \sqrt{4}$ $+ \times 3$ $d \times 3$ $(20m) \times 3 = 60m$					
234. An acorn takes 0.8 seconds to fall from a height of 3.2m. How much time will it take to fall from 9.6m?					
d = 1/3 + 3 = 3 = 3.8 m					