Low R is Skill 39-Resistance in a wire Short, Fat, Cold, Gold

- 92. A manufacturer recommends that the longer the extension cord used with an electric drill, the thicker (heavier gauge) the extension cord should be. This recommendation is made because the resistance of a wire varies
 - A) directly with length and inversely with cross-sectional area
 - B) inversely with length and directly with cross-sectional area
 - C) directly with both length and cross-sectional area
 - D) inversely with both length and cross-sectional area

R=resistance P=Resistivity L=Length A=Cross-sedimalarea

93. A copper wire is part of a complete circuit through which current flows. Which graph best represents the relationship between the wire's length and its resistance?

A)

Resistance

94. If the length of a copper wire is reduced by half, then the resistance of the wire will be

- A) halved C) quartered
- B) doubled

D) quadrupled

Skill 39-Resistance in a wire

95. Base your answer to the following question on the accompanying graph which shows the data collected for a copper wire at a constant temperature.

If the length of the copper wire being tested is decreased, its total resistance will

- (A) decrease
- B) increase
- C) remain the same
- 96. Which change decreases the resistance of a piece of copper wire?
 - A) increasing the wire's length
 - B) increasing the wire's resistivity \(\bar{1} \)
 - (C) decreasing the wire's temperature \downarrow
 - D) decreasing the wire's diameter \uparrow

Short Fat, Cold, Gold

- 97. The resistance of a copper wire is measured to be 4 ohms at 20°C. If the wire is heated to 30°C, the resistance of the wire will be
 - A) zero ohms

as temp goes up R goes up

B) less than 4 ohms (C) more than 4 ohms

D) 4 ohms

- 98. To reduce the resistance of a metal conductor one should
 - (A) cool the conductor to a low temperature
 - B) heat the conductor to a high temperature \(\Tau\)
 - C) coat the conductor with an insulator
 - D) wire the conductor in series with another resistor
- 99. The electrical resistance of a metallic conductor is inversely proportional to its
 - A) temperature direct

B) length direct

- CD cross-sectional area inverse
- D) resistivity direct

related to radius
100. If the diameter of a wire were decreased, its
electrical resistant electrical resistance would

A) decrease

(B) increase

C) remain the same

wire thinner

101. If a wire of cross-sectional area equal to A has a resistance of R, then another wire of the same material with a cross-sectional area equal to 2A will have a resistance of

A) R

B) 2R C) R/2 D) R/4

+2 R=PL

Skill 39-Resistance in a wire

102. A copper wire has a resistance of 200 ohms. A second copper wire with twice the cross-sectional area and the same length would have a resistance of

A) 50Ω

C) 200Ω

103. At 20°C, four conducting wires made of different materials have the same length and the same diameter. Which wire has the least resistance?

104. What is the resistance at 20.°C of a 2.0-meter length of tungsten wire with a cross-sectional area of 7.9 \times 10⁻⁷ meter²?

D)
$$4.0 \times 10^{-2} \Omega$$

$$R = \frac{PL}{A} = \frac{5.6 \times 10^{-8} \, \text{2 m/2 m}}{7.9 \times 10^{-1} \, \text{M}}$$

105. Which graph best represents the relationship between resistance and length of a copper wire of uniform cross-sectional area at constant temperature?

A) Resistance Length

B) Resistance Length

106. A 12.0-meter length of copper wire has a resistance of 1.50 ohms. How long must an aluminum wire with the same cross-sectional area be to have the same resistance?

(A) 7.32 m

B) 8.00 m

C) 12.0 m

D) 19.7 m

Rc=RA PcL=AL. PL=PL (1.72x10° 2m)(12m)=Q.82x10° 2m) A 1 = 7.32m