
75. On the surface of Earth, a spacecraft has a mass of 2.00 x 10⁴ kilograms. What is the mass of the spacecraft at a distance of one Earth radius above Earth's surface?

(B) $2.00 \times 10^4 \text{ kg}$

C) $4.90 \times 10^4 \text{ kg}$

- D) $1.96 \times 10^5 \text{ kg}$
- 76. A person weighing 785 newtons on the surface of Earth would weigh 298 newtons on the surface of Mars. What is the magnitude of the gravitational field strength on the surface of Mars?

A) 2.63 N/kg

- B) 3.72 N/kg
- C) 6.09 N/kg
- D) 9.81 N/kg

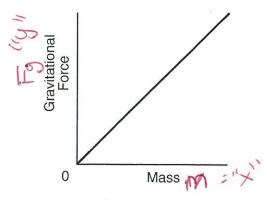
5=298N = 789N 9=? 9=9.8Ms

77. What is the weight of a 2.00-kilogram object on the surface of Earth? 9=98 4/3

A) 4.91 N

- B) 2.00 N
- C) 9.81 N
- D) 19.6 N

ig=mg

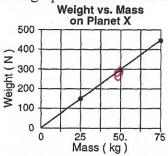

78. What is the acceleration due to gravity at a location where a 15.0-kilogram mass weighs 45.0 newtons?

A) 675 m/s^2

- B) 9.81 m/s^2
- C) 3.00 m/s²
- D) 0.333 m/s²

 $9 = \frac{15}{15} \times \frac{9}{15} \times \frac{9}$

79. Base your answer to the following question on The graph below represents the relationship between gravitational force and mass for objects near the surface of Earth.

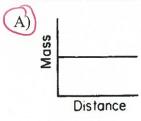


GF FO M

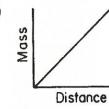
The slope of the graph represents the

- A) gravitational field strength
- C) momentum of objects
- B) universal gravitational constant
- D) weight of objects

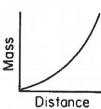
80. The graph below shows the weight of three objects on planet X as a function of their mass.

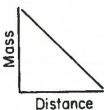


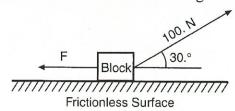
Fg=300N m=50kg


9 = Fg = \$67/52 6N

The acceleration due to gravity on planet X is


- A) 0.17 m/s^2
- B) 6.0 m/s^2
- C) 9.8 m/s^2
- D) 50. m/s²
- 81. Which graph represents the relationship between the mass of an object and its distance from the Earth's surface?

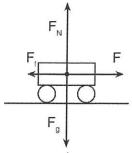

B)


C)

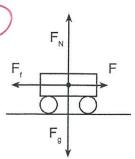
D)

82. The diagram below shows a 25 kg block on a horizontal frictionless surface. A 100.- newton force acts on the block at an angle of 30.° above the horizontal.

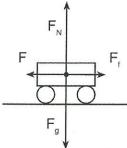
2 Fy = Fg + FN + FAY
0 = mg + FN + FASIND
(859/9.8 %) + FN + 100NSin 30°
he block?0 = -245N+FN +50N

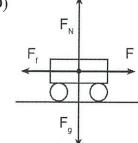

What is the magnitude of normal force acting on the block? >

- A) 50.0 N
- B) 195 N
- C) 86.6. N
- D) 245 N
- 83. The force required to accelerate a 2.0-kilogram mass at 4.0 meters per second² is
 - A) 6.0 N
- B) 2.0 N
- (C) 8.01
- D) 16 N


Fret= (akg)(4m/s2)

84. Which vector diagram best represents a cart slowing down as it travels to the right on a horizontal surface?


A)


(B)

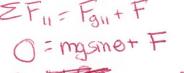
C)

D)

85. An 8.0-newton block is accelerating down a frictionless ramp inclined at 15° to the horizontal, as shown in the diagram below.

a 8.0 N Frictionless ramp Horizontal 2F11: Fg11

9 F311

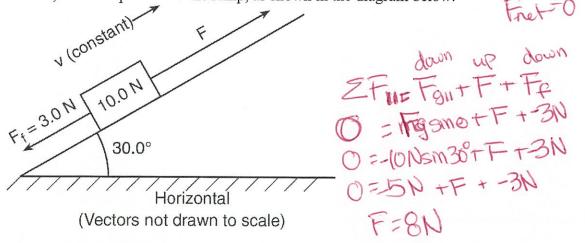

Four Fosmons

What is the magnitude of the net force causing the block's acceleration?

A) 0 N

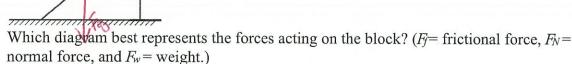
86. The diagram below shows a 10.0-kilogram mass held at rest on a frictionless 30.0° incline by force *F*.

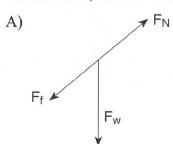
10.0 kg F

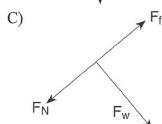

0 = 10kg/9.8mg) sm30°+ F

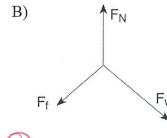
What is the approximate magnitude of force F?

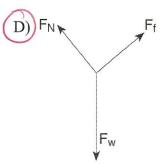
A) 9.81 N

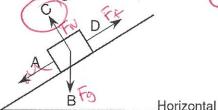

- B) 49.1 N
- C) 85.0 N
- D) 98.1 N


87. A block weighing 10.0 newtons is on a ramp inclined at 30.0° to the horizontal. A 3.0-newton force of friction, F_f , acts on the block as it is pulled up the ramp at constant velocity with force F, which is parallel to the ramp, as shown in the diagram below.

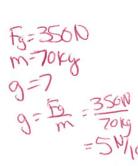



What is the magnitude of force *F*?

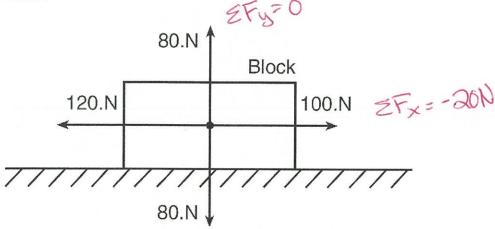

- A) 7.0 N
- B) 8.0 N
- C) 10 N
- D) 13 N
- 88. The diagram below represents a block at rest on an incline.



89. In the diagram below, a box is at rest on an inclined plane.



Which vector best represents the direction of the normal force acting on the box?


- A) A
- B) B
- D) D

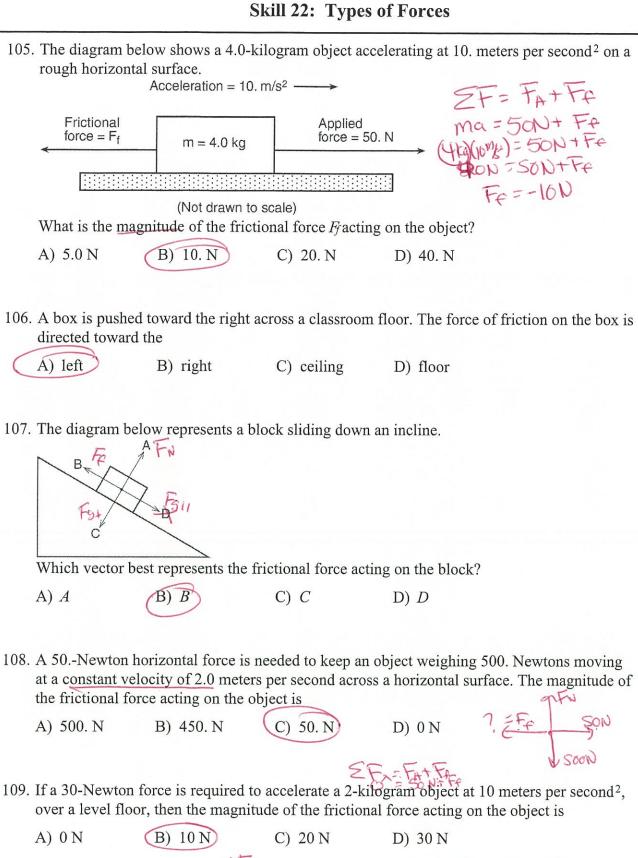
90. At a certain location, a gravitational force with a magnitude of 350 newtons acts on a 70.-kilogram astronaut. What is the magnitude of the gravitational field strength at this location?

- A) 0.20 kg/N
- B) 5.0 N/kg
- C) 9.8 m/s^2
- D) 25 000 Nkg

91. Four forces act concurrently on a block on a horizontal surface as shown in the diagram below.

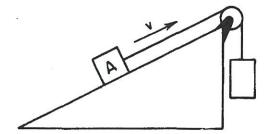
As a result of these forces, the block

- A) moves at constant speed to the right B) moves at constant speed to the left
- C) accelerate to the right
- D) accelerate to the left


92. On a small planet, an astronaut uses a vertical force of 175 newtons to lift an 87.5-kilogram boulder at constant velocity to a height of 0.350 meter above the planet's surface. What is the magnitude of the gravitational field strength on the surface of the planet?

- A) 0.500 N/kg
- (B) 2.00 N/kg
- C) 9.81 N/kg D) 61.3 N/kg

1	93. A student is standing in an elevator that exerts on the floor of the elevator must		Force that the student				
	A) less than the weight of the student vB) greater than the weight of the studeC) less than the force of the floor on theD) greater than the force of the floor or	ent when at rest ne student	The state of the s				
	94. A man weighs 900 Newtons standing on a scale in a stationary elevator. If some time later the reading on the scale is 1200 Newtons, the elevator must be moving with						
	A) constant acceleration downward C) constant acceleration upward	B) constant speed downward D) constant speed upward	1 120010 First is				
	95. An elevator containing a man weighing exerted by the man on the floor of the e	elevator is					
	A) less than 80 N (C) 800 N	B) between 80 and 800 N D) more than 800 N	TN=Fg equilibrium				
)	 96. If the magnitude of the gravitational for gravitational force of the Moon on Earth A) smaller than F C) equal to F 		magnitude of the				
	97. A ball having mass m is struck by a bat force exerted by the bat on the ball, the isA) lessB) greaterC)	having mass 9 m. Compared to the magnitude of the force exerted by the same	ne magnitude of the y the ball on the bat				
	98. A rocket engine thrusts the rocket into s	space because					
	A) the exhaust pushes against the ground B) the exhaust pushes against the air every action produces an equal and matter and energy are conserved						
)	99. A rock is thrown straight up into the air magnitude of the net force acting on the		's path, the				


along the entire path of the projectile.)

	100A table exerts a 2.0-newton force on a book lying on the table. The force exerted by the book on the table is							
A	A) 20. N	B) 2.0 N	C) 0.20 N	D) 0 N	VTO			
101. A 30-kilogram boy exerts a force of 100 Newtons on a 50-kilogram object. The force that the object exerts on the boy is								
	A) 0 N	B) 100 N	C) 980 N	D) 1,500 N	3, Ca	W		
	A child pulls a applying a 22-r shown below.	wagon at a constant newton force to the	wagon handle, wh	level sidewalk. The ich is inclined at 35	child does thi o to the sidew	s by alk as		
Eff		72 N 35°		2Fx= 0=20	FACOSO + F RNCOS35°+	Fr Fr		
,	Level sidewalk What is the magnitude of the force of friction on the wagon?							
1	A) 11 N	B) 13 N	C) 18 N	D) 22 N				
103. A 750-newton person stands in an elevator that is accelerating downward. The upward force of the elevator floor on the person must be								
	A) equal to 0 NC) equal to 750		B) less than D) greater to		Fg > T = 750N	-N		
104. An 800-newton person is standing in an elevator. If the upward force of the elevator on the person is 600 Newtons, the person is								
(A) at rest C) accelerating	downward		ting upward downward at const	ant speed	FO7FN down wins		
	The second section of the section of the second section of the section of the second section of the sectio					down wins		

 $EF_{x}=F_{A}+F_{F}$ $Ma=36N+F_{F}$ $R=36N+F_{F}$

110. Block A is pulled with constant velocity up an incline as shown in the diagram below.

Object moving up friction moving down

Which arrow best represents the direction of the force of friction acting on block A?

111. A monkey with a mass of 10 kg hangs from a rope.

a. What is the magnitude of the tension force supporting the monkey?

b. Determine the acceleration of the monkey if it were pulled upward from rest to a speed of 1 m/s in a time of 0.5s.

c. During the acceleration phase, what is the magnitude of the tension force? $20N = F_T + (-98N)$

ZFy=F++Fg ma=F++mg (1049/048)=F++(1049(9,848)

FT= 118N

d. The monkey continues to be pulled upward at 1 m/s. What is the magnitude of the tension force at this point?

F-=98N

> equilibrium