Skill 29: Work-Energy Theorem

28. Which is an SI unit for work done on an object?

- 29. When a force moves an object over a rough, horizontal surface at a constant velocity, the work done against friction produces an increase in the object's
 - A) weight
- B) momentum
- C) potential energy (D) internal energy
- 30. How much work is done on a downhill skier by an average braking force of 9.8×10^2 Newtons to stop her in a distance of 10. meters?
 - A) $1.0 \times 10^{1} \,\text{J}$
- B) $9.8 \times 10^{1} \,\mathrm{J}$
- C) $1.0 \times 10^3 \,\text{J}$
- (D) $9.8 \times 10^3 \,\text{J}$

(1) = Fd

- 31. As the time required to lift a 60-kg. object 6 meters increases, the work required to lift the body
 - A) decreases
 - B) increases
 - (C) remains the same

(32) A 15.0-kilogram mass is moving at 7.50 meters per second on a horizontal, frictionless surface. What is the total work that must be done on the mass to increase its speed to 11.5 meters per second?

A) 120. J

B) 422 J

D) 992 J

DRE=W DKE= KEQ-KE1= 1/2m(VQ2-V;2)

33. The work done in accelerating an object along a frictionless horizontal surface is equal to the change in the object's

A) momentum

B) velocity

C) potential energy D) kinetic energy

- 34. Sixteen joules of work was required to lift a 2.0-kilogram object from the floor to a table. How much potential energy was gained by the 2.0-kilogram object?

A) 0.80 joule

B) 8.0 joules

C) 16 joules

D) 32 joules

W= PF

35. A person does 100 joules of work in pulling back the string of a bow. What will be the initial speed of a 0.5-kilogram arrow when it is fired from the bow?

A) 20 m/s

B) 50 m/s

C) 200 m/s

D) 400 m/s

Skill 29: Work-Energy Theorem

21. How much work is required to lift a 1.0 kilogram mass from 4.0 meters to 40. meters above the surface of Earth?

A) 2.5 J

B) 3.6 J

C) $3.6 \times 10^2 \text{ J}$

D) $4.0 \times 10^2 \text{ J}$

W=PE=mgsh (1498mb)(350m)

22. The total work done in lifting a typical high school physics textbook a vertical distance of 0.10 meter is approximately Figure out

A) 0.15 J . 1519

B) 1.5 J(1.519)

15Kg C) 15 J

D) 150 J (150kg

which

23. The work done in lifting an apple one meter near Earth's surface is approximately

- near Earth's surface ...

 A) If $J = \sqrt{\frac{1}{3}}$ B) 0.01 J = .00 kgC) $100 \text{ J} = \sqrt{\frac{1}{3}}$ D) $1000 \text{ J} = \sqrt{\frac{1}{3}}$ PE M = $\sqrt{\frac{1}{3}}$ M
- 24. As shown in the diagram below, a child applies a constant 20.-newton force along the handle of a wagon which makes a 25° angle with the horizontal.

How much work does the child do in moving the wagon a horizontal distance of 4.0 meters?

A) 5.0 J B) 34 J (C) 73 J D) 80. J

w=Fxd=

25. Through what vertical distance is a 50.-newton object moved if 250 joules of work is done against the gravitational field of Earth?

A) 2.5 m

(B) 5.0 m

C) 9.8 m

D) 25 m

W=Fd 2501=50Nd

26. Which combination of units can be used to express work?

A) newton • second

meter

B) newton • meter | F m/s = Power |
second | Spring constant |
C) newton/meter | Mm = Spring constant |

D) newton • meter N·m=J

27. The graph below shows the force exerted on a block as a function of the block's displacement in the direction of the force.

How much work did the force do in displacing the block 5.0 meters?

A) 0 J

B) 20. J

C) 0.80 J

D) 4.0 J

Work = area

Skill 29: Work-Energy Theorem

- 36. An object is lifted at constant speed a distance *h* above the surface of the Earth in a time *t*. The total potential energy gained by the object is equal to the
 - A) average force applied to the object
 - B) total weight of the object
 - C) total work done on the object
 - D) total momentum gained by the object
- 37. Ten joules of work are done in accelerating a 2.0-kilogram mass from rest across a horizontal frictionless table. The total kinetic energy gained by the mass is
 - A) 3.2 J B) 5.0 J C) 10. J D) 20. J
- 38. The work done on a slingshot is 40.0 joules to pull back a 0.10-kilogram stone. If the slingshot projects the stone straight up in the air, what is the maximum height to which the stone will rise? [Neglect friction.]
 - A) 0.41 m
- B) 41 m
- C) 410 m
- D) 4.1 m

W = PE = mgh 401=(119)(9.842)(h) 39. The graph below represents the elongation of a spring as a function of the applied force.

Force vs. Elongation

How much work must be done to stretch the spring 0.40 meter?

A) 4.8 J B) 6.0 J C) 9.8 J D) 24 J

W= Fsx (2910)(.4m)