- 40. Which quantity is a measure of the **rate at** which work is done?
 - A) energy
- B) power
- C) momentum
- D) velocity
- 41. The rate at which work is done is measured in
 - A) Newtons
- B) joules
- C) calories
- D) watts
- 42. Which unit is equivalent to a watt, the SI unit of power?
 - A) joule/second
- B) joule/volt
- C) joule/ohm
- D) joule/coulomb
- 43. As the time required to do a given quantity of work decreases, the power developed
 - A) decreases
 - B) increases
 - C) remains the same

1 P= W/ 1

- 44. What is the maximum amount of work that a 6000.-watt motor can do in 10. seconds?
 - A) $6.0 \times 10^{1} \, \text{J}$
- B) $6.0 \times 10^2 \,\text{J}$
- C) $6.0 \times 10^3 \,\text{J}$
- (D) $6.0 \times 10^4 \,\text{J}$

w=Pt

- 45. Student *A* lifts a 50.-newton box from the floor to a height of 0.40 meter in 2.0 seconds. Student *B* lifts a 40.-newton box from the floor to a height of 0.50 meter in 1.0 second. Compared to student *A*, student *B* does
 - A) the same work but develops more power
 - B) the same work but develops less power
 - C) more work but develops less power
 - D) less work but develops more power

WANTE SON HON EW = 20)

- 46. A 40.-kilogram student runs up a staircase to a floor that is 5.0 meters higher than her starting point in 7.0 seconds. The student's power output is
 - A) 29 W
- B) 280 W
- C) $1.4 \times 10^3 \text{ W}$
- D) $1.4 \times 10^4 \text{ W}$

P=APE (40kg)(9.8mk)(Sm)

47. The graph below represents the relationship between the work done by a student running up a flight of stairs and the time of ascent.

What does the slope of this graph represent?

rime (seco

- A) impulse
- B) momentum
- C) speed
- D) power

P= W/+

- 48. If 20. joules of work is done in 4.0 seconds, the power developed is
 - A) 0.20 watt
- B) 5.0 watts
- C) 16 watts
- D) 80. watts

W=303

P=W+ = 201 = 5W

- 49. One elevator lifts a mass a given height in 10 seconds and a second elevator does the same work in 5 seconds. Compared to the power developed by the first elevator, the power developed by the second elevator is
 - A one-half as great
 - (B) twice as great
 - C) the same
 - D) four times as great

P P W W 105 55?2 50. Zazu the Hornbill lifts coconut vertically. Which of the following represents the relationship between the power and the speed at which Zazu lifts the coconut?

P=FV

- 51. Two elevators, A and B, move at constant speed. Elevator B moves with twice the speed of elevator A. Elevator B weighs twice as much as elevator A. Compared to the power needed to lift elevator A, the power needed to lift elevator B is
 - A) the same
 - B) twice as great
 - C) half as great
 - D) four times as great

- 52. A 70.-kilogram cyclist develops 210 watts of power while pedaling at a constant velocity of 7.0 meters per second east. What average force is exerted eastward on the bicycle to maintain this constant speed?
 - A) 490 N
- B) 30. N
- C) 3.0 N

R=FV 210W=F(TMS)

- 53. A boat weighing 9.0 × 10² Newtons requires a horizontal force of 6.0×10^2 Newtons to move it across the water at 1.5×10^{1} meters per second. The boat's engine must provide energy at the rate of
 - A) $2.5 \times 10^{-2} \,\mathrm{J}$
- B) $4.0 \times 10^{1} \text{ W}$

C) $7.5 \times 10^{3} \text{ J}$ D) $9.0 \times 10^{3} \text{ W}$ $P = F_{V} = (6 \times 10^{2} \text{ N})(1.5 \times 10^{1} \text{ W/s})$

- 54. In raising an object vertically at a constant speed of 2.0 meters per second, 10. watts of power is developed. The weight of the object is
 - A) 5.0 N
- B) 20. N
- C) 40. N
- D) 50. N

- 55. Car A and car B of equal mass travel up a hill. Car A moves up the hill at a constant speed that is twice the constant speed of car B. Compared to the power developed by car B, the power developed by car A is
 - A) the same
 - B) twice as much
 - C) half as much
 - D) four times as much
- 56. If a motor lifts a 400.-kilogram mass a vertical distance of 10. meters in 8.0 seconds, the minimum power generated by the motor is
 - A) 3.2 10² W
- B) 5.0 10² W
- C) 4.9 10³ W
- D) 3.2 104 W

- 57. What is the maximum height to which a motor having a power rating of 20.4 watts can lift a 5.00-kilogram stone vertically in 10.0 seconds?
 - A) 0.0416 m
- B) 0.408 m
- C) 4.16 m
- D) 40.8 m

m-5kg

+ 7105

- 58. What is the average power required to raise a 1.81×10^4 -newton elevator 12.0 meters in 22.5 seconds?
 - A) $8.04 \times 10^2 \text{ W}$
- (B) $9.65 \times 10^3 \text{ W}$
- C) $2.17 \times 10^5 \text{ W}$
- D) $4.89 \times 10^{6} \text{ W}$

F=1.81x10410 P= d=12m +=22.5s

59. A 3.0-kilogram block is initially at rest on a frictionless, horizontal surface. The block is moved 8.0 meters in 2.0 seconds by the application of a 12-newton horizontal force, as shown in the diagram below.

	3.0 kg			F = 12 N														
Friet	onlo	7	7	7	/	/	/	1	7	7	7	7	7	7	7	7	7	/
Frictionless surface			8.0 m															

What is the average power developed while moving the block?

- A) 24 W C) 48 W
- B) 32 W
- D) 96 W