	Variable	Units	Alternate	Vector	Important equations or notes(values
			Units	or	
				scalar	
Acceleration	а	m/s ²		V	F_{net} =ma, a= $\Delta v/t$, in vertical a=g, "a does the same a F_{net} "
Centripetal acceleration	ac	m/s ²		V	$a_c = v^2/r$ When direction not speed changes. Always toward center
displacement	d	m		V	Displacement is a vector so direction is important
distance	d	m		S	Distance is a scalar, direction is not important
Total Mechanical Energy	Eτ	J	Nm, or kgm ² /s ²	S	E_T = KE + PE for frictionless systems, E_T =Work
Total Energy	Eτ	J	Nm, or kgm ² /s ²	S	E_T =KE+PE + Q when friction is present. E_T = Work
Force	F	N	kg m/s²	V	A push or pull. For momentum ?s F=m $\frac{\Delta v}{t} = F = \frac{\Delta p}{t}$ (F is rate of change in momentum)
Centripetal Force	Fc	Ν	kg m/s²	V	Always toward center; a net force equal to another force agent; $F_c = mv^2/r$
Weight or force due to gravity	Fg	Ν	kg m/s ²	V	$F_g=mg,F_g=F_Non$ horizontal, $F_{gll}=mgsin\Theta$ on inclined plane.
Normal force	F _N	N	kg m/s²	V	Force perpendicular to surface, F_N =mgcos Θ , angle=0 on horizontal
Net force	F _{net}	N	kgm/s ²	V	The unbalanced (winning) force on an object. Always in agreement with "a",
Force on a spring	Fs	N	kg m/s ²	V	F _s =kx in vertical systems F _s =F _g
Frictional Force	Ff	N	kg m/s²	V	$F_f{=}\mu F_N~$ For an object moving at constant speed on horizontal $F_f{=}F_{Ax}$
Acceleration due to gravity	g	m/s²	N/kg	V	On Earth all masses experience a downward vertical gravitational field with a strength
Gravitational Field Strength	g	N/kg	m/s²	V	of 9.81N/kg causing an acceleration 9.81m/s ² downward when in free fall.
Universal Gravitational constant	G	Nm²/kg²		S	6.67 x 10 ⁻¹¹ Nm ² /kg ² On PRT
Height	h or d _y	m		V or S	For a dropped object $v_f = \sqrt{2gh}$
Impulse	J	Ns	kg m/s	V	J=Ft=mΔv=Δp
Spring constant	k	N/m	kg/s ²	S	Direct relationship to PE _s or work on spring
Kinetic Energy	KE	J	Nm or kgm ² /s ²	S	KE=1/2 mv ² Associated with motion. Equal to Fd on a horizontal frictionless surface.
Mass	m	kg		S	Same as inertia, Objects with mass have a gravitational field.
Momentum	р	kgm/s	Ns	V	J=Ft=mΔv=Δp
Power	P	W	J/s	S	The rate at which work is done (or energy used or gained)
Potential Energy (gravitational)	PE	J	Nm or kgm ² /s ²	S	Equal to vertical work in frictionless (Fgd) PEtop=KEbottom
Potential energy stored in a spring	PEs	J	Nm or kgm ² /s ²	S	$PE_s=1/2kx^2$ or work on a spring ($F_s/2$)x [average F_s x stretch)
Internal energy	Q	J	Nm or kgm ² /s ²	S	Also known as work due to friction (W=F _f d) and heat energy. W=E _T =KE + PE + Q
Radius or distance between centers	r	m		S	Inverse square to F_g (2xr means $F_g/4$)
Time interval	t	S		S	Inverse to power for a fixed amout of work
Velocity	V	m/s		V	v=d/t Velocity includes direction
Speed	v	m/s		S	v=d/t Speed is used when direction is not important
Average velocity or constant speed	V	m/s		V, S	V_{avg} equals "total d over t" or $v = \frac{v_i + v_f}{2}$
Work	W	J	Nm or kgm ² /s ²	S	$W=\Delta E_T$ in frictionless: horizontal $W=KE$; vertical $W=PE$, spring $W=PE_s$ Friction $W=F_fd$
Coefficient of static friction	μ _s			S	$\mu = \frac{F_f}{R_v}$ Coefficients on PRT. For moving object use kinetic; for object at rest use
Coefficient of kinetic friction	μ _k			S	static. Kinetic coefficient is always less than static coefficient

	Variable	Units	Alternate Units	Vector	Important equations or notes(values
			O Into	scalar	
Cross sectional area	А	m²		S	Resistance is inversely related to A and inverse square to radius (A= $\pi r^2 R = \frac{\rho L}{A}$ so $R = \frac{\rho L}{\pi r^2}$)
Electric Field Strength	E	N/C		V	Charge behaves in an "E field" like mass behaves in a "g field"
Electrostatic Force	Fe	N		V	$F_e = Eq$ for uniform fields (parallel plates) and $F_e = \frac{kq_1q_2}{r^2}$ between 2 point charges
Current	Ι	A	C/s	S	Flow of charge per second. I =V/R
Electrostatic constant	k	Nm ² /C ²		S	k=8.99 x 10 ⁹ Nm ² /C ²
Length of a conductor	L	m		S	Length directly related to Resistance
Electrical Power	Р	W	J/s	S	$P=W/t = VI = V^2/R = I^2R$
Charge	q	C	Elementary charge	S	$1e = 1.6 \times 10^{-19} \text{ C}$ or $1C = 6.25 \times 10^{18} \text{ to convert to C multiply by } 1.6 \times 10^{-19} \text{ C}$.to convert to e divide by $1.6 \times 10^{-19} \text{ C}$
Resistance	R	Ω		S	R=V/I or R=pL/A
Equivalent Resistance	R _{eq}	Ω		S	For series $R_{eq}=R_1+R_2+R_3$ For Parallel R_{eq} =the inverse of the sum of the inverses $1/R_{eq}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}$ so $R_{eq}=\frac{1}{\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}}$
Distance between center (of charge)	r	m		S	Inverse square relationship between r and Fe
Potential difference	V	V	J/C CΩ/s	S	Potential difference is the energy or work per charge v=W/q V=IR
Electrical energy or work	W	J	CV or eV	S	1eV = 1.6 x 10 ⁻¹⁹ J 1 eV is the amount of work required to move 1 e through 1V W=Vq W=Pt W=VIt= V ² t/R = I ² Rt
Resistivity	ρ	Ωm		S	A property of the material. Listed in a chart on PRT
Universal Mass Unit	u	u		S	1u=9.31x10 ² MeV
Frequency	f	Hz		S	Cycles per second. Inverse to period of a wave. Frequency does not change with "n"
(absolute) index of refraction	n			S	n=c/V
Period	Т	S		S	Seconds per cycle
velocity of wave	v	m/s		S	$v=f\lambda$ $v = (\frac{cycles}{second}x\frac{meters}{cycle} = \frac{meters}{second})$ or $v=f/T$ $v = \frac{\frac{meters}{cycle}}{\frac{seconds}{cycle}} = \frac{meters}{second}$
Wavelength	λ	m		S	Meters per cycle. Distance between 1 repeated cycle on a wave (crest to crest etc)
Angle of incidence	Θi	Degrees		S	
Energy of a photon	Ephoton	J	eV	S	E=hf
Planck's constant	h	Js		S	
Speed of light in a vacuum	С	m/s		S	Speed of all EM waves